Because it does not run at the same capacity 24/7. Sometimes it produces energy for 0 households and sometimes for 50,000. Total production in one year corresponds to the yearly consumption of 36,000 households.
So they could just as accurately say "...power 36,000 households" And then fill in anything afterwards. "for 1 year", "for 5 years", "for the life of the turbine". Or just leave it at 36,000 households. The "1 year" is so meaninglessly superfluous it annoys me. I mean, everyone knows they don't produce power 24/365. That fact is always one of the disingenuous anti-renewable energy talking points.
In engineering, it pretty common to calculate things over a 1 year period in order to relate cost calculations to company finances. Most companies calculate their finances annually, so calculating for yearly average energy production makes any comparison easier than other arbitrary periods of time.
But it's not superflouos? The number is apparently based on yearly average. Not on 5 year or over the total lifetime. And it does not produce only for 36,000 households but likely for many more. I don't see why thin seems so meaningless to you or annoys you so much.
Why would the 5 year average be different than a 1 year average?
How should I know? Maybe it contains downtime for maintenance or sth? Point is these numbers are based on yearly average so why write about 5 years?
How should I know?
Exactly. Why add a time unit if it doesn't communicate anything? It produces a year's worth of energy per year, by definition. They could just quote the average power and be done but they tacked on "per year" for no reason.
Because most things like this are measured in average power per year and it is useful for comparison. Different technologies produce energy at different rates. Solar, only when the sun is up. How would you compare it to wind which has different rules?
Taken to an extreme, consider some hypothetical new technology that produced 50 Gigawatts of energy, but did it in a second and then took a year to recharge before doing it again. Would it be more useful to say it had a 50 Gigawatt capacity or that it provided 50 Gigawatts of power per year when trying to compare it to other technologies?
Edit: I hope nobody would use my hypothetical technology... Boom!
50 GW for 1s is 50GJ. If that's the energy delivered in a year then the average power is 1.584 kW. As long as your power plant lasts a few years or more (and you can actually put that energy onto the grid), the average power is a useful quantity to compare against any other power generation. Saying the average is over a period of a year doesn't express anything about the variability of the power; just like saying your power plant could power a single electric heater running continuously, for a year, a decade or whatever period you like.
Power per unit time is kind of nonsense. It expresses an increase or decrease in power. Energy per unit time is power and is how we typically rate things that make or consume energy.
Because it does not run at the same capacity 24/7. Sometimes it produces energy for 0 households and sometimes for 50,000. Total production in one year corresponds to the yearly consumption of 36,000 households.
So they could just as accurately say "...power 36,000 households" And then fill in anything afterwards. "for 1 year", "for 5 years", "for the life of the turbine". Or just leave it at 36,000 households. The "1 year" is so meaninglessly superfluous it annoys me. I mean, everyone knows they don't produce power 24/365. That fact is always one of the disingenuous anti-renewable energy talking points.
In engineering, it pretty common to calculate things over a 1 year period in order to relate cost calculations to company finances. Most companies calculate their finances annually, so calculating for yearly average energy production makes any comparison easier than other arbitrary periods of time.
But it's not superflouos? The number is apparently based on yearly average. Not on 5 year or over the total lifetime. And it does not produce only for 36,000 households but likely for many more. I don't see why thin seems so meaningless to you or annoys you so much.
Why would the 5 year average be different than a 1 year average?
How should I know? Maybe it contains downtime for maintenance or sth? Point is these numbers are based on yearly average so why write about 5 years?
Exactly. Why add a time unit if it doesn't communicate anything? It produces a year's worth of energy per year, by definition. They could just quote the average power and be done but they tacked on "per year" for no reason.
Because most things like this are measured in average power per year and it is useful for comparison. Different technologies produce energy at different rates. Solar, only when the sun is up. How would you compare it to wind which has different rules?
Taken to an extreme, consider some hypothetical new technology that produced 50 Gigawatts of energy, but did it in a second and then took a year to recharge before doing it again. Would it be more useful to say it had a 50 Gigawatt capacity or that it provided 50 Gigawatts of power per year when trying to compare it to other technologies?
Edit: I hope nobody would use my hypothetical technology... Boom!
50 GW for 1s is 50GJ. If that's the energy delivered in a year then the average power is 1.584 kW. As long as your power plant lasts a few years or more (and you can actually put that energy onto the grid), the average power is a useful quantity to compare against any other power generation. Saying the average is over a period of a year doesn't express anything about the variability of the power; just like saying your power plant could power a single electric heater running continuously, for a year, a decade or whatever period you like.
Power per unit time is kind of nonsense. It expresses an increase or decrease in power. Energy per unit time is power and is how we typically rate things that make or consume energy.